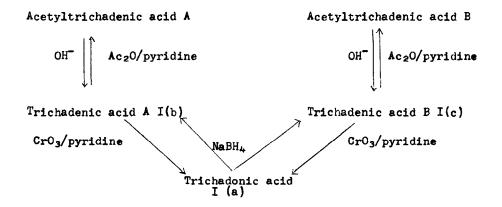
FOUR NEW FRIEDELANE CARBOXYLIC ACIDS FROM THE BARK OF

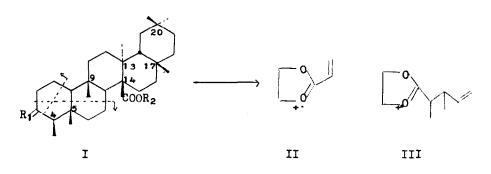
TRICHADENIA ZEYLANICA THW. (FLACOURTIACEAE)*


S.P.Gunasekera and M.U.S.Sultanbawa

Department of Chemistry, University of Sri Lanka,

Peradeniya Campus, Peradeniya, Sri Lanka

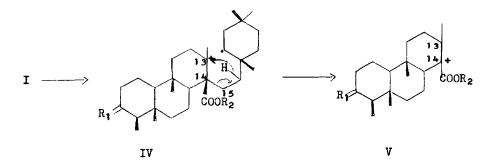
(Received in UK 31 May 1973; accepted for publication 13 June 1973)


From the light petroleum extract of the bark of the endemic plant, <u>Trichadenia zeylanica</u> Thw., Flacourtiaceae (Sinhala - tolol) four new triterpenoid carboxylic acids, called trichadenic acid A I(b), acetyltrichadenic acid A, acetyl trichadenic acid B and trichadonic acid I(a) have been separated by silica gel chromatography and interrelated as shown below

From the mass spectrum and C,H analysis, trichadonic acid I(a) had a molecular formula $C_{30}H_{48}O_3$. It was saturated and the i.r. spectrum had absorption for a CO group (1716 cm⁻¹) and carboxy group (1685 cm⁻¹). The n.m.r. spectrum showed signals for six tertiary methyl groups and a single secondary methyl group (19.1, J 8Hz), indicating a friedelane skeleton¹. The methyl ester had an o.r.d. curve similar to friedelan-3-one², showing negative Cotton effect having major peak at (α) + 8460 and a secondary peak at (α) + 7805 and trough at (α) - 5946 and a secondary trough at (α) - 3948. This

indicated that trichadonic acid I(a) was a friedelan-3-one carboxylic acid. The mass spectrum of the ethylene ketal, I(d) of I(a), had the base peak (II) at m/e 99 and the next peak (III) at m/e 153 confirming the 3-position for the keto group and fixing methyl groups at positions 4 and 5. (Scheme I)

Scheme I


I (a) Trichadonic acid (Friedelan-3-on-26-oic acid), $R_1 = -0$, $R_2 = H$ I(b) Trichadenic acid A (Friedelan-3 α -ol-26-oic acid), $R_1 = -H$, $R_2 = H$ OH I(c) Trichadenic acid B (Friedelan-3 β -ol-26-oic acid), $R_1 = -H$, $R_2 = H$ I(d) Ketal of trichadonic acid, $R_1 = -H$, $R_2 = H$ $CH_2 = 0$, $R_2 = H$

In the n.m.r. spectrum of acetyltrichadenic acid A the proton at the carbon containing the acetyl group had a signal at $75.34(W_{1/2}, 20Hz)$ whereas in acetyl-trichadenic acid B the proton signal was at $75.11(W_{1/2}, 5HZ)$. The different $W_{1/2}$ values established that in trichadenic acid A the 3-OH group was equatorial $(\underline{\alpha} -)$ and in trichadenic acid B it was axial $(\underline{\beta} -)^3$.

The carboxy group in the compounds I(a), I(b) and I(c) could be at C₉, C₁₃, C₁₄, C₁₇ and C₂₀ in the friedelane skeleton. Positions C₉ and C₂₀ were eliminated for the carboxy group in trichadonic acid I(a) as it was not identical with authentic samples of roxburghonic acid¹, and octandronic acid⁴ respectively which had a carboxy group in these positions. Similarly position C₁₇ was eliminated in trichadenic acid B I(c) as it was not identical with an authentic sample of Canophyllic acid⁵ which had the CO_2H group at C_{17} . As the mass spectral fragment tation of octandrolic acid⁴ (friedelan-3β-ol-20β-oic acid) was different from trichadenic acid A, the carboxy group could not have been the $C_{20}\alpha$ -carboxylic acid.

This left only positions C_{13} and C_{14} for the carboxy group. The C_{14} position for the carboxy group is preferred owing to the existence of a fragment (Va) at m/e 305 as base peak in the mass spectrum of trichadonic acid I(a). The formation of V presumably takes place according to the pathway $I \rightarrow IV \rightarrow V$ shown below. (If the transfer of proton in IV took place with C_{14} with cleavage of $C_{14} - C_{15}$ bond, the fragment V would have the positive charge in C_{13})⁶. This pathway has been observed in all the related compounds studied as the base peaks $V(a) \rightarrow V(g)$ are at the appropriate m/e values (See Scheme II)

Scheme II

- V(a) from trichadonic acid I(a) at m/e 305
- V(b) and (c) from trichadenic acid Acid A and B [I(b)] and I(c) at m/e 307
- V(d) from methyl trichadonate $[I, R_1 = =0, R_2 = Me]$ at m/e 319
- V(e) and (f) from acetyltrichadenic acid A and B $\begin{bmatrix} I, R_1 = H, OAc, R_2 = H \end{bmatrix}$ at m/e 349
- V(g) from deoxytrichadonic acid $[I, R_1 = H_2, R_2 = H]$ at m/e 29I

This assignment is further supported from steric consideration⁶, and is in agreement with the observed reactivity of the carboxy group towards esterification and hydrolysis reactions. Hence trichadonic acid becomes friedelan-3-on-26-oic acid and trichadenic acids A and B would be friedelan- 3^{a} ol-26-oic acid and friedelan- 3β -ol-26-oic acid respectively.

It is hoped to obtain further evidence by X-ray structure determination. The authors thank ProfessorsW.D.Ollis and R.H.Thomson for spectral data and the National Science Council of Ceylon for a grant. Drs. T.R.Govindachari and C.R.Mitra are thanked for the authentic samples.

REFERENCES

- 1. H.S.Garg and C, M.Mitra, Phytochemistry, IO, 865(1971)
- 2. C.Djerassi, R.Rinker and B.Rinker, J.Amer.Chem.Soc., 78, 6362(1956)
- 3. L.M. Jackman and S. Sternhell, "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd Edition, Pergamon, London(1969)
- 4. S.F.Gunasekera and M.U.S.Sultanbawa, Chem. and Ind. (1973) in the press.
- 5. T.R.Govindachari, N.Visvanathan, B.R.Pai, U.Ramadas Rao and R.Siriniwasan, <u>Tetrahedron</u>, <u>23</u>, 1901(1967)
- 6. cf. T.Kikuchi, M.Niwa and N.Masaki, <u>Tetrahedron</u> <u>Letters</u>, 5249(1972)
 - * Part V in the series '' Chemical Investigation of Ceylonese Plants''.